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ABSTRACT

The self-consistent equilibrium configurations available to low
density (q = wpz/wcz <« 1) toroidal electron clouds under the influence
of an external magnetic field and the electric fields due to space and
image charges are discussed. The equilibria are dynamic rather than
static, but steady. VB, centrifugal and other drifts are shown to be
unimportant, in contrast to the situation in toroidal neutral plasmas.
Typical equilibria are shown in detail, to zero order in q . The con-
struction of equilibria accurate to order q is shown to be possible but

is not carried out in detail.




1. INTRODUCTION

Two new applications for magnetically contained clouds of
electrons require toroidal vacuum vessels and magnetic fields. It
appears that self-consistent azimuthally symmetric toroidal equilibria
are possible for such clouds without the necessity for a rotational trans-
form. 3 Roughly, the existence of such equilibria is due to the favorable
effect of the strong electric fields which arise both from the presence of
unneutralized space charge and from the corresponding surface charges
on the wall of the containing vessel. These electric fields constrain the
electrons to move in closed orbits even when account is taken of the first
order particle drifts usually found in a torus (VB, etc.). This situation
is in striking contrast to the neutral plasma case where, in the absence
of important electric fields, special techniques (such as the rotational
transform) are required to provide containment against the first order
drifts.

In the applications cited above,l » 2 the electric field is due entirely
to a combination of space and image charges, there being no applied
potential., Further, the ratio q = wpz/wcz is small, on the order of 10_3.
It follows that the electron motion is essentially a balance between the
electric and magnetic forces, inertial forces being less than either by the
factor q . Alternatively, if we suppose that a typical ''thermal' velocity

is not greater than the electric drift velocity E/B , we find that the typical

electron gyro radius is not greater than mE/eB2 . But from Gauss' law,



E~ nea/eo (see Fig. 1), and it follows that q can be interpreted
equivalently as the ratio of the gyro radius to the ''scale size' of the
electric field. The ''scale size' of the magnetic field, due to the toroidal
geometry, is b(> a) . Thus for moderate radius ratios, q is a rough
measure of the '"adiabaticity parameter,' the parameter which measures
the appropriateness of the guiding-center approximation. For the present
case, this approximation should be very accurate indeed. Under the same
assumption on the electron thermal velocities, q has still another inter-
pretation, namely the ratio of the electron kinetic pressure to the electric
pressure.

These considerations suggest the following treatment of the problem
of equilibrium: first (Section 2) we neglect all effects of order ¢, that is,
all those effects proportional to the electron mass. This yields for the

electron motion the simple expression

Yp = ——p— (1.1)
B

which must be interpreted as the zero-order solution to the electronic
equation of motion. In this approximation the electrons are supposed cold,
and no distinction need be made between the particles and their guiding
centers. Explicit solutions to the equilibrium problem are given in this
limit,

Section 3 is devoted to considerations of the effects of order g
taking the particle drift point of view. The principal result of Section 3 is

the observation that since the electron energy, magnetic moment, and
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This figure shows the general configuration discussed in the
text. The electrons are subject to the space charge field and
the imposed toroidal magnetic field; equilibrium configurations
are sought. Agzimuthal symmetry is assumed. The curve
marks the boundary of the electron cloud.



angular momentum are conserved in the adiabatic approximation, the
allowable positions of the particle are restricted to the immediate vicinity
of a definite equipotential, The conservation of the electron energy is
exhibited explicitly in an adiabatic (guiding center) approximation to the
electron motion. Use of the guiding center drift velocity in the equation
of continuity yields the necessary functional form of the guiding center
distribution for a steady state. It is argued that this form, together with
Poisson's equation for the electrostatic potential ¢ may be solved self-
consistently to yield steady equilibria. This result implies that the '""cold"
equilibria discussed in Section 2 are in fact very close to true self-
consistent equilibria of the "warm' electron cloud. More generally,
containment in the presence of VB drifts is seen to be accomplished by
finding an equilibrium position for the plasma in which the VB drifts
which are, say, upward, are just cancelled by a mean electric drift
downwards.

The remaining sections deal with the effect of finite VE/C , and

the connection between the derived equilibria and Earnshaw's theorem.




2. BASIC CASE, q=0

We consider the geometryillustratedin Fig. 1, Azimuthal sym-
metry is assumed. We neglect ''thermal' motion, and the electron inertia.
Since only steady equilibria are being sought, we can derive the electiric
field from an electrostatic potential ¢(r,z) . The electron motion is then

solely in the meridian plane and is given by

-V¢ x B

X‘E = ————B-T———— . (2. 1)

This motion is along an equipotential, so that the potential energy of each

electron is conserved. The steady state continuity equation is

div nyp = 0 (2. 2)

and, on substitution and expansion we find:

(Vo x v_nz) e B = 0 . (2. 3)
B

To reach this result it is necessary to observe that

Vo ecurl B = p Ve j = —p,oen{Vd)oxE} - 0
(2. 4)
where we have identified j as the conduction current - ney .

Thus, the result depends on the fact that, from (2.1), Y and V¢ are



perpendicular; it does not depend on the vanishing of curl B.

The interpretation of (2. 3) is as follows: by symmetry V¢ and
V(n/BZ) both lie in the meridional plane. Their cross product is therefore
parallel to B, and (2.3) can be satisfied only if V¢ and Vn/B2 are

parallel, This in turn requires that

5 = f(9) (2. 5)
B

where { is an arbitrary function. Now in two dimensional motion perpen-
dicular to the magnetic field the quantity n/B is preserved by each parcel
of electrons, this being the number of electrons per unit length in a flux
tube. In a torus, however, the flux tubes change their length. Since the
length of the tube is proportional to B_1 , the quantity n/B2 now has the
significance of the number of electrons per flux tube. Note that the ratio
q is proportional to n/B2 . Now we have seen that the electrons move at
constant ¢ . The significance of (2.5) is therefore that steady motion is
possible when the number of electrons per flux tube is the same at all
points on the same equipotential. This is the most general condition for
steady equilibrium under the approximations of this section.

It is a rather simple matter to use the condition (2.5) to derive

actual equilibria in detail. To see this, we use Poisson's equation:

v2y - nefk, - (2. 6

Also,



curl B = p.oj (2.7)

implies (in view of the azimuthal symmetry)

B o L
r

+ O(vg2/c) (2. 8)
. . 2,2 . . .
Neglecting the correction of order VE /c® in this equation, we can

combine (2.5), (2.6) and (2. 8) to yield

v% = r %1(¢) (2. 9)

where some constants have been absorbed into f . (In Section 4 we shall
see that this equation holds true even if vE/c is not negligibly small.)
Consider, for example, the situation in which n/B2 {for q) is constant
not only along each equipotential, but has the same value for each equi-
potential. In this case f($) is constant and solutions of (2.9) are readily

obtained in the form
¢ = (¢ nr)2 + harmonic functions . (2.10)

An example of a solution of this type is givenin Fig. 2. Such solutions
can easily be found to fit any equipotential boundary, or, in the converse
procedure, any equipotential arising in this way can be taken as a boundary
of the electron cloud. It is a simple matter also to solve for the potential
in any vacuum space between the boundary of the cloud and the containing
vessel if this is not too distant. For other choices of the function £f(¢) the

computation becomes more difficult in practice, but not in principle.
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Fig. 2 Equipotentials associated with the potential function

¢ &< Z(Qnr)2 + fnr - 1/2 (z2 - 1) + z% for which

Vzd) o 4r=2, The constant of proportionality is adjusted

to make ¢ = ¢3 on the edge C of the electron cloud. In
the lower part of the figure the potential and absolute value
of the electric field in the plane of symmetry z = 0 are
shown on arbitrary scales. The equilibrium shown here is
subject to various small corrections as indicated in
Sections 3 and 4.
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We conclude this section by observing that the arbitrary function
f(¢) appearing in (2.5) or (2.9) will be determined in any given case by
the way the electron cloud is set up. The details of the way in which the

setting-up process determines f(¢) are outside the scope of this paper.



3. PARTICLE DRIFT DESCRIPTION: FINITE gq.

In steady fields, the total energy, H, of each electron is necessarily
conserved. In addition, for our assumed azimuthally symmetric system,
each electron's angular momentum, J, about the 2> axis is also conserved.
Because of the smallness of the characteristic ratio q , the adiabatic

description4 of the electrons' motion in terms of a drifting guiding center

(velocity = XD) and a constant adiabatic magnetic moment

po= (3.1)

w
L
B

is applicable. This additional constraint together with H and J vyields
the trajectory of the guiding center to within the accuracy of the predictions

of the adiabatic theory. Evaluating all quantities at the position of the

guiding center one may define a total energy

_ m 2
Hg = -e¢p + W_L + W t > Ve
2 2
= e + pB +- 21 + 2 (¥ (3.2)
2mr 2 B

which differs from the true electron energy by terms of order qzeqS ~
10—6ed) . It is this energy that is conserved in the guiding center approxi-

mation. Equation (3.2) defines systems of surfaces of constant Hg which

constrain the positions of the electron guiding centers and hence the
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position of each individual electron. For reasonable radius ratios, we
can assume that the terms W_L and W | are comparable in magnitude to
the term —é—m(V(}S/B)Z . The basis for this assumption is the observation
that in the applications considered, many of the electrons will be formed
essentially at rest. In these conditions WL will be close to %—m(Vd)/B)Z
initially. It may then be expected that w 0 is of the same order of magni-
tude. The last three terms in (3.2) are smaller by the factor q than the
first term, and it follows that the surfaces of constant I—Ig depart from
the equipotentials by distances on the order of the gyro-radius, i.e.,

~ gqa . In particular, when the equipotentials are closed, so are the sur-
faces of constant Hg , which therefore ensures containment.

Several deductions follow from equation (3.2). First, if there is
no electric field (neutral plasma), the first and last terms drop out. It
can then be seen that the guiding center motion is constrained to a surface
of constant r , that is, to a cylinder; such a cylinder inevitably intersects
the boundary of the containing vessel. As we know, the VB and centri-
fugal drifts do in fact confine the particles to such a cylinder; study of
the kinematics yields the drift velocities and directions along the cylinder.

In a general discussion of particle containment, Budker5 obtained a
closely related result. Using an assumed electric field in a torus, Budker
obtained a closed circular orbit for an electron which was displaced
laterally (towards r = 0 in Fig, 1) a distance of the order of
(W_L + 2w L Ya/eEb from his assumed circular equipotentials. For a
given field, this shift is readily reconciled with equation (3. 2) if one takes

AHg = 0 over a circular orbit, assuming circular equipotentials.

-12-




However, the interesting physical point is that Budker's lateral shift may
be interpreted to yield an average effective electric field which in turn
yields an average Eeff x B drift. This drift just cancels the drifts
due to VB and centrifugal forces, giving us a complementary picture of
the manner in which containment is achieved.

Another observation of Budker's is of interest in the present con-
text. He considers a secondary magnetic field B' such as would arise
from a current in the plasma parallel to the primary magnetic field, or
from a current in external windings of the rotational transform type. The
magnetic field lines associated with B' are nested as are the equi-
potentials of, say, Fig. 2. It is then clear that a particle having a large
Vi (to the primary magnetic field) will experience a force in the same
direction as the electric forceof Fig. 2 or Fig., 3, and the containment pic-
ture is essentially the same, withE replaced by v|; B'. In certain respects,
then, the toroidal containment of charged plasmas by electric fields is
comparable to the toroidal containment of neutral plasmas using the
rotational transform. However, from the single particle point of view,
containment by rotational transforms must fail for all those particles
having sufficiently small I v | . No such difficulty arises for the
charged plasma case.

Thus far we have argued that simple conservation principles are
sufficient to ensure that each electron's guiding center moves in a closed
orbit in the presence of steady fields. It remains in this section to show
how closed orbits of this kind can be combined into a fully self-consistent

equilibrium. These equilibria may be expected to differ from those

13-




AS5337

Fig. 3

MAJOR

AXIS
RADIAL

! ELECTRIC FIELD
!
— —
|

ELECTRON

ORBIT

Periodic drift orbit of an electron in a toroidal magnetic
field, with a radial electric field. Note the displacement
of the large orbit from the center of the cross-section.
This displacement is roughly (w/ed) o (az/b) («<a),
where w is the total kinetic energy in the sense of (3. 2).
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discussed in Section 2 by an amount of order q . In view of the smallness
of q, it follows that more interest attaches to a demonstration of the
existence of such self-consistent equilibria, than to detailed calculations
concerning their nature.

Assuming the adiabatic approximation, we may classify each
particle according to its '"constants" y and J . Writing n'(y,J,r,2z) as
the density of guiding centers of the indicated class of electrons and
-Y'D(u" J,r,z) as its (Eulerian) velocity in the transverse (r, z) plane, then

for azimuthal symmetry, the continuity equation requires

div (n'v
~

D

for each p and J . Following the treatment of Northrop, 4 one obtains the
result that for our toroidal system, the perpendicular component of the

guiding center velocity is given by

2 J B
Xp = -V6-EB - Zovt - =) x5
e Z2e Zmer B
m B
+ -—(—2— e V x VD) ¥p (3.4)
e B
We have used the fact that ¥ = (£ o V) = Vi’ -% x Vx £ =

2
1 2 J . ‘s '
> V(vD + ;2:[) - Xp X V x Yp in obtaining (3. 4) from Northrop's

result (his equation 1.13).
Equation (3.4) contains all of the first order drifts applicable to a

non-relativistic treatment — (1) the E x B drift, (2) the VB drift, and

-15-
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(3) the acceleration drifts due to the curvature of the guiding center
trajectory.
It is immediately clear from (3.4) that the combined influence of

the first order drifts is to cause the guiding center to move perpendicular

2
. . m 2 J
to the gradient of the quantity (-e¢ + uB + ? vp o+ _2;;2_ ) .

Retaining quantities of O(l) and O(q) , this quantity is simply Hg as
given by (3.2). Hence, to the accuracy of the usual drift approximation,
Hg is conserved as previously asserted. To O(qz) in (3. 4) the quantity

V x v

Yp may be takenas V x y.. and so we find that

E

VH, x B m B -1
’Y’D = T (]. - e— -7- ® V X ‘Y‘E) . (3. 5)

The derivation of (3. 5) has followed from a non-relativistic treat-
ment of the electron motion and so is correct through terms of order
qVEZ/c2 in a two-parameter expansion of the equation of motion.

Observing then that

m B nm sz
— —z *V*Eyg T ——z tOla—)
e B EOB c

where n is the total particle number density we may finally write

nm -1 VHg X E 1 VH x E
vp =l-—s) —E T =-a-9 —E,5
GOB eB eB

(3.6)

-16-




VEZ
to a consistent accuracy of Of{q —2-) .
c
Now we find that substitution of (3. 6) in the continuity equation (3. 3)

yields

via nm ! _
Vng {( - 2) Z} B =0 (3.7)

39

v
where we have neglected terms of O(——Ez—) in the equation for curl B
c
for simplicity in our present treatment (see Section 4). The neglect of these

terms implies B = B0 and so equation (3. 7) has the solution

n'(wJ,7.27) = Byo (- —22) Glu, 3 Hy (3,7, 2)) (3. 8)
€08

where G is any arbitrary function of the constants of the ''adiabatic"
motion u,J, and Hg .

At this point, we have shown the following:

(2) Taking account of all first-order drifts, the individual guiding
centers move on closed trajectories; these trajectories depart from the
equipotentials by distances on the order of the gyro-radius.

(b) The class of electrons having given adiabatic invariants will be
in steady equilibrium if equation (3. 8) for the density of this class is
satisfied.

It therefore remains to show that we can sum over all values of
¢ and J in such a way as to be consistent with the macroscopic number

density and electric field. Owur procedure is to exhibit this consistency in

-17-



a simple case, emphasizing the physical approximations involved, rather
than to attempt a more general existence theorem.

We observe first that with error ~ q2 the number densities of
the particles and of the guiding centers are the same. Next, we assume
BG/BHg R~ G/(Hg)max and so may expand the function G as

G(‘LL’J-’Hg) = G(H,J, ‘e(i)) + (Hg+ed))g—g_ + O(qz) hd (3' 9)

H =-
g~ eo

From (3.2), the quantity Hg + e¢d 1is just the particle kinetic energy, and
is a factor ~ gq smaller than either Hg or e¢ . Neglecting terms of

order q2 , then (3.8) may be written:

n'(li:J,r,Z) - G(“’J9-ed)) + (H +ed)) _a_G_.
N 5000w
0 H =-
g~ ¢
(3.10)
- Er_n_ lz_ . G(U’J’ —eqS)]
0 B
0
We now consider the following special form for G :
G (u,J,Hg) = £ (u, J) (Hg > ¢4)
(3.11)
0 H < ¢0).

g

(bo is the potential of the edge of the electron cloud.

The effect of this choice for G is, to zero order, to let n'(u,J, r, z)/BO

-18-
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be uniform for ¢ < ¢ » and zerofor ¢ > ¢y - Nowlet ¢'(u,J,r,2)

satisfy

vl¢r = e (3.12)

so that ¢' is the potential arising from the particles having invariants p
and J. For G defined by (3.11), the solution of (3.10) and (3.12) is then
essentially the same problem as was studied at the end of Section 2. The
general solution is given in equation (2.10); a particular case is illustrated
in I'ig. 2. Clearly ¢' is constant on the curve C (i.e., the edge of

the electron cloud). Now, by superposition,
o(r,z) = Zu 79", T, 7, 2) (3.13)

Evaluating this on the curve C defines the constant d)o

At this stage we have reconstructed the solution of Fig. 2 as the
zero order solution to (3.10). We now consider the two correction terms of
order q . Dealing first with the second term we see that it represents a

volume effect. Provided we redefine f(u,J) so that

n(r, Z)/BOZ
&n(r, Z)

€y By

PIYRE (TR (3.14)

U

the density will be correct with errors of O(qz) . Satisfaction of (3.14) is
possible, since the right-hand side is an absolute constant (i.e., inde-

pendent of r and z ) for ¢ < qSO .
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We now consider the other correction term in (3.10). From the

definition (3.11) of G, 8G/8Hg vanishes everywhere, except
H =-e¢

g
that it has a delta -function behavior at the edge of the electron cloud. This
term therefore represents a correction to the density n' on the edge of the
electron cloud. As such it is (in first order) susceptible of two equivalent
interpretations. We can either think of it as a blurring of the edge, over a

distance like a gyro-radius. The alternative (and more useful) interpretation

is as a surface charge distributed on the zeroth order cloud edge and of

magnitude
o(rl,zl) . 5 O'(“"T’rl’zl)
-2 . - — 2
B, (rl) W J By
2 E 2
J m n
[“BO + — + -——(—) ] f(u,J)
2mr 2 B
o 1 0
- E (r,, z,)

In evaluating the right-hand side of (3.15), all quantities are evaluated at the
edge of the electron cloud, that is on the curve C; En is the electric field
on C, pointing into the cloud,

Equation (3.15) represents a surface charge of order q , distributed
around the curve C. The last step in our demonstration is to consider the
electric field due to this charge. But this electric field can be supposed to
vanish inside C (i.e., in the electron cloud) provided that an appropriate
normal electric field exists outside it. Thus, seen from outside the cloud,
the potential on C is zero, and the normal electric field is En plus a

small correction. By integrating Laplace's equation forward along the

-20-




electric field lines, the equipotentials can be located. Any of these is a
consistent location for the conducting wall of the containing vessel. Even
though, for computational reasons, this procedure will be unsatisfactory if
the wall is very far from the edge of the electron cloud, it nevertheless
guarantees that when the cloud is fairly near the wall, simple self-
consistent solutions for the fields exist, correct to order q . There
seems to be no reason why such solutions should not also exist for choices

of the function G other than that of (3.11).

-21-




4. FINITE VALUE OF vp’/c”

For the applications citedl’ 2 in Section 1, it is expected that the
parameter vEZ/c2 will have a characteristic value of about 0. 05; we must
therefore consider the small change in the magnetic field due to the current
of electrons flowing at a speed ~.25c, and dynamical effects resulting
from the use of the correct relativistic equation of electron motion. Of
these two effects we shall ignore the second entirely, for the following
reason: all effects involving the electron mass are of order q{( ~ 10_3).
The relativistic effect may be thought of as an effective correction to the
electron mass of order vEZ/c2 . The combined effect yields a correction
of order quz/cz ~5 x 107 , and there seems to be no reason to sup-
pose that this numerically small effect should have an importance beyond
its apparent magnitude.

With respect to the modification to the magnetic field caused by the
electron current, we consider the changes of order VEZ/CZ produced in
the '"zero-order'" solutions exemplified by Fig. 2. For the cited numbers
these changes are somewhat larger than the corrections of order q.

We observe first that the result (2.5), that n/B2 = f(¢) , was shown

in Section 2 to be valid even when curl B was not negligible. This result

followed from the fact that

curl B = ygb = i, —’é‘;r (Vé x B) (4.1)

-23-




so that curl B is perpendicular to V¢ . But we can make use of our

result (2.5) to rewrite (4. 1) in the form

curl B = ppe V{frora} xp . (4.2)

and this equation can be solved explicitly for B, as:

B = B exp { toe '[f £(¢) dé } (4. 3)
0

where B0 o4 r_l is the vacuum field due to the external windings, and
d)o is the potential of the edge of the electron cloud., Clearly, (2.5) and
(4. 3) together imply that n/BO2 , which is proportional to an » is (as we
asserted in Section 2) in all cases a function of ¢ .

By way of example, the potentialillustratedin Fig. 2 can be seen
to satisfy n/BO2 = constant. This means that the f(¢) appearing in

(4.3) is just By°/B”. On solving we find simply

2 2 ne(d) N d’o)
B" = B, 1+ — . (4. 4)

B.“/2u

0 0

At the bottom of the potential well, ¢ = 0 and BO2 is reduced by the amount
2u0en¢0 . As expected, the ratio of this quantity to BO2 is of order
VEZ/CZ . For simplicity, in Section 3 we neglected terms of order
VEZ/CZ in the calculation of equation (3.6). With a generalization from

¢ to Hg and from n to a summation over all particles, one finds for the

_24_




calculations of Section 3 a correction to B and n/B2 analogous to that
of equation (4.3). To a consistent order of accuracy (i.e, up to terms of
O(q%%—) one finds no qualitative differences from the corrections discussed
above.

In conclusion, the effect of small but finite VEZ/CZ is to modify
slightly the equilibria that would otherwise have been expected, but, and

this is the important point, it does not substantially change their character

from that discussed in the previous sections,
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5. EARNSHAW'S THEOREM

It is sometimes thought that Earnshaw's theorem (as described,
say, by Coulsoné) makes equilibria of unneutralized electron clouds
impossible. This is not so. Earnshaw's theorem states that stable
static equilibrium is impossible for a collection of free charges, and it
follows from the observation that solutions of Laplace's equation cannot
have maxima or minima except at boundaries. The electron clouds
described in this paper are indeed not in static equilibrium, but move
about, for the most part at the velocity E x Q/B2 . However, if the
orbits described by the particles are periodic, the configuration can be
described as being in dynamic equilibrium, and this type of equilibrium
is beyond the scope of Earnshaw's theorem. A well-known example of
the distinction we are making here is the solar system which also cannot
be in static equilibrium due to the gravitational analog of Earnshaw's

theorem.
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6. CONCLUSIONS

In conclusion, we have brought out the factors contributing to the
possibility of finding self-consistent steady equilibria for azimuthally
symmetric toroidal magnetically confined electron clouds. While strict
proofs are lacking, the indications are that a variety of equilibria do exist,
and these are close to those that result from a simple approximate calcu-
lation. Rotational transforms are not necessary. Theoretical discussions
of stability problems affecting electron clouds of the type discussed have
been given by Levy, 7 Buneman et al, 8 and others. Experimental evidence

in general support of these ideas will be found in a forthcoming paper.
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